LensFactory.Lenses.init_NSISPLens
— Typeinit_NSISPLens(x_c::Real=0.0, y_c::Real=0.0, v_d::Real=NaN, x_s::Real=NaN)
Initialize a Non-Singular Isothermal Sphere potential (NSISP) lens with the given parameters.
LensFactory.Lenses.NSISPLens.potential!
— Functionpotential!(ψ::T, θx::T, θy::T, θxc::RV, θyc::RV, vd::RV, θs::RV) where T <: ROA
\[ψ(\pmb{θ}) = 4 π \left(\frac{v_d}{c} \right)^2 \sqrt{θ_s^2 + |\pmb{θ} - \pmb{θ}_c|^2}\]
LensFactory.Lenses.NSISPLens.deflection!
— Functiondeflection!(ψx::T, ψy::T, θx::T, θy::T, θxc::RV, θyc::RV, vd::RV, θs::RV) where T <: ROA
\[\pmb{\hat{α}} (\pmb{θ}) = 4 π \left(\frac{v_d}{c} \right)^2 \frac{\pmb{θ} - \pmb{θ}_c}{\sqrt{θ_s^2 + |\pmb{θ} - \pmb{θ}_c|^2}}\]
LensFactory.Lenses.NSISPLens.jacobian!
— Functionjacobian!(ψxx::T, ψyy::T, ψxy::T, θx::T, θy::T, θxc::RV, θyc::RV, vd::RV, θs::RV) where T <: ROA
\[\begin{align*} ψ_{xx} (\pmb{θ}) &= 4 π \left(\frac{v_d}{c} \right)^2 \frac{θ_s^2 + (\pmb{θ}_y - \pmb{θ}_{yc})^2}{\left( θ_s^2 + |\pmb{θ} - \pmb{θ}_c|^2 \right)^{3/2}} \\[5pt] ψ_{yy} (\pmb{θ}) &= 4 π \left(\frac{v_d}{c} \right)^2 \frac{θ_s^2 + (\pmb{θ}_x - \pmb{θ}_{xc})^2}{\left( θ_s^2 + |\pmb{θ} - \pmb{θ}_c|^2 \right)^{3/2}} \\[5pt] ψ_{xy} (\pmb{θ}) &= 4 π \left(\frac{v_d}{c} \right)^2 \frac{- \: (\pmb{θ}_x - \pmb{θ}_{xc}) \: (\pmb{θ}_y - \pmb{θ}_{yc})}{\left( θ_s^2 + |\pmb{θ} - \pmb{θ}_c|^2 \right)^{3/2}} \end{align*}\]
LensFactory.Lenses.NSISPLens.einstein_angle
— Functioneinstein_angle(Dds::RV, Ds::RV, vd::RV)::RV
\[θ_E = \sqrt{ 4 π \frac{D_{ds}}{D_s} \left(\frac{v_d}{c} \right)^2 - θ_s^2 }\]