LensFactory.Lenses.PointLens.potential!Function
potential!(ψ::T, θx::T, θy::T, Dol::RV, θxc::RV, θyc::RV, mass::RV) where T <: ROA

\[ψ(\pmb{θ}) = \frac{4{\rm G}M}{{\rm c}^2} \frac{1}{D_d} \ln |\pmb{θ} - \pmb{θ}_c|\]

source
LensFactory.Lenses.PointLens.deflection!Function
deflection!(ψx::T, ψy::T, θx::T, θy::T, Dol::RV, θxc::RV, θyc::RV, mass::RV) where T <: ROA

\[\pmb{\hat{α}} (\pmb{θ}) = \frac{4{\rm G}M}{{\rm c}^2} \frac{1}{D_d} \frac{\pmb{θ} - \pmb{θ}_c}{|\pmb{θ} - \pmb{θ}_c|^2}\]

source
LensFactory.Lenses.PointLens.jacobian!Function
jacobian!(ψxx::T, ψyy::T, ψxy::T, θx::T, θy::T, Dol::RV, θxc::RV, θyc::RV, mass::RV) where T <: ROA

\[\begin{align*} ψ_{xx} (\pmb{θ}) &= \frac{4{\rm G}M}{{\rm c}^2} \frac{1}{D_d} \frac{(\pmb{θ}_y - \pmb{θ}_{yc})^2 - (\pmb{θ}_x - \pmb{θ}_{xc})^2}{|\pmb{θ} - \pmb{θ}_c|^4} \\[5pt] ψ_{yy} (\pmb{θ}) &= \frac{4{\rm G}M}{{\rm c}^2} \frac{1}{D_d} \frac{(\pmb{θ}_x - \pmb{θ}_{xc})^2 - (\pmb{θ}_y - \pmb{θ}_{yc})^2}{|\pmb{θ} - \pmb{θ}_c|^4} \\[5pt] ψ_{xy} (\pmb{θ}) &= \frac{4{\rm G}M}{{\rm c}^2} \frac{1}{D_d} \frac{-2 \: (\pmb{θ}_x - \pmb{θ}_{xc}) \: (\pmb{θ}_y - \pmb{θ}_{yc})}{|\pmb{θ} - \pmb{θ}_c|^4} \end{align*}\]

source