LensFactory.Lenses.init_SISLens
— Typeinit_SISLens(x_c::Real=0.0, y_c::Real=0.0, v_d::Real=NaN)
Initialize a Singular Isothermal Sphere (SIS) lens with the given parameters.
LensFactory.Lenses.SISLens.potential!
— Functionpotential!(ψ::T, θx::T, θy::T, θxc::RV, θyc::RV, vd::RV) where T <: ROA
\[ψ(\pmb{θ}) = 4 π \left(\frac{v_d}{c} \right)^2 |\pmb{θ} - \pmb{θ}_c|\]
LensFactory.Lenses.SISLens.deflection!
— Functiondeflection!(ψx::T, ψy::T, θx::T, θy::T, θxc::RV, θyc::RV, vd::RV) where T <: ROA
\[\pmb{\hat{α}} (\pmb{θ}) = 4 π \left(\frac{v_d}{c} \right)^2 \frac{\pmb{θ} - \pmb{θ}_c}{|\pmb{θ} - \pmb{θ}_c|}\]
LensFactory.Lenses.SISLens.jacobian!
— Functionjacobian!(ψxx::T, ψyy::T, ψxy::T, θx::T, θy::T, θxc::RV, θyc::RV, vd::RV) where T <: ROA
\[\begin{align*} ψ_{xx} (\pmb{θ}) &= 4 π \left(\frac{v_d}{c} \right)^2 \frac{(\pmb{θ}_y - \pmb{θ}_{yc})^2}{|\pmb{θ} - \pmb{θ}_c|^3} \\[5pt] ψ_{yy} (\pmb{θ}) &= 4 π \left(\frac{v_d}{c} \right)^2 \frac{(\pmb{θ}_x - \pmb{θ}_{xc})^2}{|\pmb{θ} - \pmb{θ}_c|^3} \\[5pt] ψ_{xy} (\pmb{θ}) &= 4 π \left(\frac{v_d}{c} \right)^2 \frac{- \: (\pmb{θ}_x - \pmb{θ}_{xc}) \: (\pmb{θ}_y - \pmb{θ}_{yc})}{|\pmb{θ} - \pmb{θ}_c|^3} \end{align*}\]
LensFactory.Lenses.SISLens.einstein_angle
— Functioneinstein_angle(Dds::RV, Ds::RV, vd::RV)::RV
\[θ_E = 4 π \frac{D_{ds}}{D_s} \left(\frac{v_d}{c} \right)^2\]